Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 15.077
Filtrar
1.
Environ Sci Technol ; 58(15): 6693-6703, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38577981

RESUMO

A major component of human skin oil is squalene, a highly unsaturated hydrocarbon that protects the skin from atmospheric oxidants. Skin oil, and thus squalene, is continuously replenished on the skin surface. Squalene is also quickly consumed through reactions with ozone and other oxidants. This study examined the extent of squalene depletion in the skin oils of the forearm of human volunteers after exposure to ozone in a climate chamber. Temperature, relative humidity (RH), skin coverage by clothing, and participants' age were varied in a controlled manner. Concentrations of squalene were determined in skin wipe samples collected before and after ozone exposure. Exposures to ozone resulted in statistically significant decreases in post-exposure squalene concentrations compared to pre-exposure squalene concentrations in the skin wipes when squalene concentrations were normalized by concentrations of co-occurring cholesterol but not by co-occurring pyroglutamic acid (PGA). The rate of squalene loss due to ozonolysis was lower than its replenishment on the skin surface. Within the ranges examined, temperature and RH did not significantly affect the difference between normalized squalene levels in post-samples versus pre-samples. Although not statistically significant, skin coverage and age of the volunteers (three young adults, three seniors, and three teenagers) did appear to impact squalene depletion on the skin surfaces.


Assuntos
Poluição do Ar em Ambientes Fechados , Ozônio , Humanos , Adolescente , Esqualeno/análise , Ozônio/análise , Poluição do Ar em Ambientes Fechados/análise , Pele/química , Oxidantes
2.
Environ Sci Technol ; 58(15): 6564-6574, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38578220

RESUMO

Formation of highly oxygenated molecules (HOMs) such as organic peroxides (ROOR, ROOH, and H2O2) is known to degrade food and organic matter. Gas-phase unimolecular autoxidation and bimolecular RO2 + HO2/RO2 reactions are prominently renowned mechanisms associated with the formation of peroxides. However, the reaction pathways and conditions favoring the generation of peroxides in the aqueous phase need to be evaluated. Here, we identified bulk aqueous-phase ROOHs in varying organic precursors, including a laboratory model compound and monoterpene oxidation products. Our results show that formation of ROOHs is suppressed at enhanced oxidant concentrations but exhibits complex trends at elevated precursor concentrations. Furthermore, we observed an exponential increase in the yield of ROOHs when UV light with longer wavelengths was used in the experiment, comparing UVA, UVB, and UVC. Water-soluble organic compounds represent a significant fraction of ambient cloud-water components (up to 500 µM). Thus, the reaction pathways facilitating the formation of HOMs (i.e., ROOHs) during the aqueous-phase oxidation of water-soluble species add to the climate and health burden of atmospheric particulate matter.


Assuntos
Peróxido de Hidrogênio , Peróxidos , Material Particulado/análise , Oxidantes , Água , Aerossóis
3.
Environ Monit Assess ; 196(5): 431, 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38580863

RESUMO

Effluent containing tartrazine can affect the environment and human health significantly prompting the current study into degradation using a sonochemical reactor operated individually and combined with advanced oxidation processes. The optimum conditions for ultrasound treatment were established as dye concentration of 10 ppm, pH of 3, temperature as 35 °C, and power as 90 W. The combination approach of H2O2/UV, H2O2/US, and H2O2/UV/US resulted in higher degradation of 25.44%, 57.4%, and 74.36% respectively. Use of ZnO/UV/US approach increased the degradation significantly to 85.31% whereas maximum degradation as 93.11% was obtained for the US/UV/Fenton combination. COD reduction was found maximum as 83.78% for the US/UV/Fenton combination. The kinetic analysis showed that tartrazine dye degradation follows pseudo first-order kinetics for all the studied processes. Combination of Fenton with UV and US was elucidated as the best approach for degradation of tartrazine.


Assuntos
Oxidantes , Tartrazina , Humanos , Peróxido de Hidrogênio , Cinética , Ferro , Monitoramento Ambiental , Raios Ultravioleta , Oxirredução
4.
J Hazard Mater ; 470: 134286, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38615649

RESUMO

Microplastic hetero-aggregates are stable forms of microplastics in the aqueous environment. However, when disinfecting water containing microplastic hetero-aggregates, the response of them in water to different oxidizing agents and the effect on water quality have not been reported. Our results showed that Ca(ClO)2, K2S2O8, and sodium percarbonate (SPC) treatment could lead to the disaggregation of microplastic hetero-aggregates as well as a rise in cell membrane permeability, which caused a large amount of organic matter to be released. When the amount of oxidant dosing is insufficient, the oxidant cannot completely degrade the released organic matter, resulting in DOC, DTN, DTP and other indicators being higher than before oxidation, thus causing secondary pollution of the water body. In comparison, K2FeO4 can purify the water body stably without destroying the microplastic hetero-aggregates, but it only weakly inhibits the toxic cyanobacteria Microcystis and Pseudanabaena, which may cause cyanobacterial bloom as well as algal toxin and odorant contamination in practical application. Compared with the other oxidizers, K2S2O8 provides better inhibition of toxic cyanobacteria and has better ecological safety. Therefore, when treating microplastic-containing water bodies, we should consider both water purification and ecological safety, and select appropriate oxidant types and dosages to optimize the water treatment.


Assuntos
Microplásticos , Oxidantes , Poluentes Químicos da Água , Oxidantes/química , Microplásticos/toxicidade , Microplásticos/química , Poluentes Químicos da Água/química , Poluentes Químicos da Água/toxicidade , Carbonatos/química , Purificação da Água/métodos
5.
Anticancer Agents Med Chem ; 24(3): 224-234, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38629155

RESUMO

BACKGROUND: The side effects of conventional therapeutics pose a problem for cancer treatment. Recently, combination treatments with natural compounds have attracted attention regarding limiting the side effects of treatment. Oleuropein is a natural polyphenol in olives that has antioxidant and anticancer effects. OBJECTIVES: This study aimed to investigate the oxidative stress effect of a combination of Paclitaxel, a chemotherapeutic agent, and Oleuropein in the MCF-7 cell line. METHODS: The xCELLigence RTCA method was used to determine the cytotoxic effects of Oleuropein and Paclitaxel in the MCF-7 cell line. The Total Oxidant and Total Antioxidant Status were analyzed using a kit. The Oxidative Stress Index was calculated by measuring Total Oxidant and Total Antioxidant states. The levels of superoxide dismutase, reduced glutathione and malondialdehyde, which are oxidative stress markers, were also measured by ELISA assay kit. RESULTS: As a result of the measurement, IC50 doses of Oleuropein and Paclitaxel were determined as 230 µM and 7.5 µM, respectively. Different percentages of combination ratios were generated from the obtained IC50 values. The effect of oxidative stress was investigated at the combination rates of 10%, 20%, 30%, and 40% which were determined to be synergistic. In terms of the combined use of Oleuropein and Paclitaxel on oxidative stress, antioxidant defense increased, and Oxidative Stress Index levels decreased. CONCLUSION: These findings demonstrate that the doses administered to the Oleuropein+Paclitaxel combination group were lower than those administered to groups using one agent alone (e.g. Paclitaxel), the results of which reduce the possibility of administering toxic doses.


Assuntos
Neoplasias da Mama , Glucosídeos Iridoides , Paclitaxel , Humanos , Feminino , Paclitaxel/farmacologia , Neoplasias da Mama/tratamento farmacológico , Células MCF-7 , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Iridoides/farmacologia , Estresse Oxidativo , Oxidantes/farmacologia , Oxidantes/uso terapêutico
6.
Physiol Rep ; 12(8): e16026, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38653584

RESUMO

High sodium intake is decisive in the incidence increase and prevalence of hypertension, which has an impact on skeletal muscle functionality. Diazoxide is an antihypertensive agent that inhibits insulin secretion and is an opener of KATP channels (adosine triphosphate sensitive potasium channels). For this reason, it is hypothesized that moderate-intensity exercise and diazoxide improve skeletal muscle function by reducing the oxidants in hypertensive rats. Male Wistar rats were assigned into eight groups: control (CTRL), diazoxide (DZX), exercise (EX), exercise + diazoxide (EX + DZX), hypertension (HTN), hypertension + diazoxide (HTN + DZX), hypertension + exercise (HTN + EX), and hypertension + exercise + diazoxide (HTN + EX + DZX). To induce hypertension, the rats received 8% NaCl dissolved in water orally for 30 days; in the following 8 weeks, 4% NaCl was supplied to maintain the pathology. The treatment with physical exercise of moderate intensity lasted 8 weeks. The administration dose of diazoxide was 35 mg/kg intraperitoneally for 14 days. Tension recording was performed on the extensor digitorum longus and the soleus muscle. Muscle homogenates were used to measure oxidants using fluorescent probe and the activity of antioxidant systems. Diazoxide and moderate-intensity exercise reduced oxidants and increased antioxidant defenses.


Assuntos
Antioxidantes , Diazóxido , Hipertensão , Músculo Esquelético , Condicionamento Físico Animal , Ratos Wistar , Animais , Diazóxido/farmacologia , Masculino , Músculo Esquelético/metabolismo , Músculo Esquelético/efeitos dos fármacos , Hipertensão/metabolismo , Hipertensão/fisiopatologia , Condicionamento Físico Animal/fisiologia , Ratos , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Oxidantes/metabolismo
7.
Food Microbiol ; 121: 104516, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38637078

RESUMO

Oxidation-reduction potential (ORP) is commonly used as a rapid measurement of the antimicrobial potential of free chlorine during industrial fresh produce washing. The current study tested the hypothesis that ORP can act as a "single variable" measurement of bacterial (vegetative and endospores) inactivation effectiveness with free chlorine irrespective of the water pH value. This situation has on occasion been assumed but never confirmed nor disproven. Chlorine-dosed pH 6.5 and 8.5 phosphate buffer solutions were inoculated with Escherichia coli (E. coli), Listeria innocua (L. innocua), or Bacillus subtilis (B. subtilis) endospores. ORP, free chlorine (FC), and log reduction were monitored after 5 s (for E. coli and L. innocua) and up to 30 min (for B. subtilis spores) of disinfection. Logistic and exponential models were developed to describe how bacteria reduction varied as a function of ORP at different pH levels. Validation tests were performed in phosphate buffered pH 6.5 and 8.5 cabbage wash water periodically dosed with FC, cabbage extract and a cocktail of Escherichia coli O157:H7 (E. coli O157:H7) and Listeria monocytogenes (L. monocytogenes). The built logistic and exponential models confirmed that at equal ORP values, the inactivation of the surrogate strains was not consistent across pH 6.5 and pH 8.5, with higher reductions at higher pH. This is the opposite of the well-known free chlorine-controlled bacterial inactivation, where the antibacterial effect is higher at lower pH. The validation test results indicated that in the cabbage wash water, the relationship between disinfection efficiency and ORP was consistent with the oxidant demand free systems. The study suggests that ORP cannot serve as a reliable single variable measurement to predict bacterial disinfection in buffered systems. When using ORP to monitor and control the antibacterial effectiveness of the chlorinated wash water, it is crucial to take into account (and control) the pH.


Assuntos
Escherichia coli O157 , Listeria monocytogenes , Listeria , Desinfecção/métodos , Cloro/farmacologia , Cloro/análise , Contaminação de Alimentos/análise , Microbiologia de Alimentos , Oxidantes , Contagem de Colônia Microbiana , Manipulação de Alimentos/métodos , Cloretos , Oxirredução , Água/química , Antibacterianos , Concentração de Íons de Hidrogênio , Fosfatos
8.
Environ Health Perspect ; 132(3): 37003, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38445893

RESUMO

BACKGROUND: Air pollution risk assessments do not generally quantify health impacts using multipollutant risk estimates, but instead use results from single-pollutant or copollutant models. Multipollutant epidemiological models account for pollutant interactions and joint effects but can be computationally complex and data intensive. Risk estimates from multipollutant studies are therefore challenging to implement in the quantification of health impacts. OBJECTIVES: Our objective was to conduct a case study using a developmental multipollutant version of the Environmental Benefits Mapping and Analysis Program-Community Edition (BenMAP-CE) to estimate the health impact associated with changes in multiple air pollutants using both a single and multipollutant approach. METHODS: BenMAP-CE was used to estimate the change in the number of pediatric asthma emergency department (ED) visits attributable to simulated changes in air pollution between 2011 and 2025 in Atlanta, Georgia, applying risk estimates from an epidemiological study that examined short-term single-pollutant and multipollutant (with and without first-order interactions) exposures. Analyses examined individual pollutants (i.e., ozone, fine particulate matter, carbon monoxide, nitrogen dioxide (NO2), sulfur dioxide, and particulate matter components) and combinations of these pollutants meant to represent shared properties or predefined sources (i.e., oxidant gases, secondary pollutants, traffic, power plant, and criteria pollutants). Comparisons were made between multipollutant health impact functions (HIF) and the sum of single-pollutant HIFs for the individual pollutants that constitute the respective pollutant groups. RESULTS: Photochemical modeling predicted large decreases in most of the examined pollutant concentrations between 2011 and 2025 based on sector specific (i.e., source-based) estimates of growth and anticipated controls. Estimated number of avoided asthma ED visits attributable to any given multipollutant group were generally higher when using results from models that included interaction terms in comparison with those that did not. We estimated the greatest number of avoided pediatric asthma ED visits for pollutant groups that include NO2 (i. e., criteria pollutants, oxidants, and traffic pollutants). In models that accounted for interaction, year-round estimates for pollutant groups that included NO2 ranged from 27.1 [95% confidence interval (CI): 1.6, 52.7; traffic pollutants] to 55.4 (95% CI: 41.8, 69.0; oxidants) avoided pediatric asthma ED visits. Year-round results using multipollutant risk estimates with interaction were comparable to the sum of the single-pollutant results corresponding to most multipollutant groups [e.g., 52.9 (95% CI: 43.6, 62.2) for oxidants] but were notably lower than the sum of the single-pollutant results for some pollutant groups [e.g., 77.5 (95% CI: 66.0, 89.0) for traffic pollutants]. DISCUSSION: Performing a multipollutant health impact assessment is technically feasible but computationally complex. It requires time, resources, and detailed input parameters not commonly reported in air pollution epidemiological studies. Results estimated using the sum of single-pollutant models are comparable to those quantified using a multipollutant model. Although limited to a single study and location, assessing the trade-offs between a multipollutant and single-pollutant approach is warranted. https://doi.org/10.1289/EHP12969.


Assuntos
Asma , Poluentes Ambientais , Criança , Humanos , Georgia/epidemiologia , Asma/epidemiologia , Oxidantes , Material Particulado
9.
Int J Mol Sci ; 25(6)2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38542238

RESUMO

Oxidative stress, characterized by an imbalance favouring oxidants over antioxidants, is a key contributor to the development of various common diseases. Counteracting these oxidants is considered an effective strategy to mitigate the levels of oxidative stress in organisms. Numerous studies have indicated an inverse correlation between the consumption of vegetables and fruits and the risk of chronic diseases, attributing these health benefits to the presence of antioxidant phytochemicals in these foods. Phytochemicals, present in a wide range of foods and medicinal plants, play a pivotal role in preventing and treating chronic diseases induced by oxidative stress by working as antioxidants. These compounds exhibit potent antioxidant, anti-inflammatory, anti-aging, anticancer, and protective properties against cardiovascular diseases, diabetes mellitus, obesity, and neurodegenerative conditions. This comprehensive review delves into the significance of these compounds in averting and managing chronic diseases, elucidating the key sources of these invaluable elements. Additionally, it provides a summary of recent advancements in understanding the health benefits associated with antioxidant phytochemicals.


Assuntos
Antioxidantes , Estresse Oxidativo , Humanos , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Antioxidantes/metabolismo , Oxidantes/farmacologia , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/uso terapêutico , Doença Crônica
10.
Neurologia (Engl Ed) ; 39(3): 292-301, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38553104

RESUMO

INTRODUCTION: This paper highlights the relationship of inflammation and oxidative stress as damage mechanisms of Multiple Sclerosis (MS), considered an inflammatory and autoimmune disease. DEVELOPMENT: The oxidative stress concept has been defined by an imbalance between oxidants and antioxidants in favor of the oxidants. There is necessary to do physiological functions, like the respiration chain, but in certain conditions, the production of reactive species overpassed the antioxidant systems, which could cause tissue damage. On the other hand, it is well established that inflammation is a complex reaction in the vascularized connective tissue in response to diverse stimuli. However, an unregulated prolonged inflammatory process also can induce tissue damage. CONCLUSION: Both inflammation and oxidative stress are interrelated since one could promote the other, leading to a toxic feedback system, which contributes to the inflammatory and demyelination process in MS.


Assuntos
Esclerose Múltipla , Humanos , Estresse Oxidativo/fisiologia , Inflamação , Antioxidantes/metabolismo , Oxidantes
11.
Free Radic Biol Med ; 217: 179-189, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38490457

RESUMO

Redox organization governs an underlying simplicity in living systems. Critically, redox reactions enable the essential characteristics of life: extraction of energy from the environment, use of energy to support metabolic and structural organization, use of dynamic redox responses to defend against environmental threats, and use of redox mechanisms to direct differentiation of cells and organ systems essential for reproduction. These processes are sustained through a redox context in which electron donor/acceptor couples are poised at substantially different steady-state redox potentials, some with relatively reducing steady states and others with relatively oxidizing steady states. Redox-sensitive thiols of the redox proteome, as well as low molecular weight redox-active molecules, are maintained individually by the kinetics of oxidation-reduction within this redox system. Recent research has revealed opposing network interactions of the metallome, redox proteome, metabolome and transcriptome, which appear to be an evolved redox response structure to maintain stability of an organism in the presence of variable oxidative environments. Considerable opportunity exists to improve human health through detailed understanding of these redox networks so that targeted interventions can be developed to support new avenues for redox medicine.


Assuntos
Oxidantes , Proteoma , Humanos , Oxirredução , Compostos de Sulfidrila
12.
Cell Biol Int ; 48(5): 712-725, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38499507

RESUMO

The involvement of the TRP vanilloid 1 (TRPV1) cation channel on the 5-Fluorouracil (5-FU)-caused Ca2+ signals through the activation of the apoptotic signaling pathway and stimulating the mitochondrial Ca2+ and Zn2+ accumulation-induced reactive oxygen species (ROS) productions in several cancer cells, except the colorectal cancer (HT-29) cell line, was recently reported. I aimed to investigate the action of silver nanoparticles (SiNPs) and 5-FU incubations through the activation of TRPV1 on ROS, apoptosis, and cell death in the HT-29 cell line. The cells were divided into four groups: control, SiNP (100 µM for 48 h), 5-FU (25 µM for 24 h), and 5-FU + SiNP. SiNP treatment through TRPV1 activation (via capsaicin) stimulated the oxidant and apoptotic actions of 5-FU in the cells, whereas they were diminished in the cells by the TRPV1 antagonist (capsazepine) treatment. The apoptotic and cell death actions of 5-FU were determined by increasing the propidium iodide/Hoechst rate, caspase-3, -8, and -9 activations, mitochondrial membrane depolarization, lipid peroxidation, and ROS, but decreasing the glutathione and glutathione peroxidase. The increase of cytosolic free Ca2+ and Zn2+ into mitochondria via the stimulation of TRPV1 current density increased oxidant and apoptotic properties of 5-FU in the cells. For the therapy of HT-29 tumor cells, I found that the combination of SiNPs and 5-FU was synergistic via TRPV1 activation.


Assuntos
Antineoplásicos , Neoplasias Colorretais , Nanopartículas Metálicas , Humanos , Espécies Reativas de Oxigênio/metabolismo , Fluoruracila/farmacologia , Estresse Oxidativo , Prata/farmacologia , Sinalização do Cálcio , Regulação para Cima , Antineoplásicos/farmacologia , Apoptose , Oxidantes/farmacologia , Neoplasias Colorretais/tratamento farmacológico , Cálcio/metabolismo , Canais de Cátion TRPV/metabolismo
13.
Org Lett ; 26(15): 2934-2938, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38551481

RESUMO

Natural sesquiterpenoid lactones are prominent scaffolds in drug discovery. Despite the progress made in their synthesis, their extensive oxidative decoration makes their chemo- and stereoselective syntheses highly challenging. Herein, we report our effort to mimic part of the oxidase phase used in the costunolide pathway to achieve the protecting-group-free total synthesis of santamarine, dehydrocostus lactone, estafiatin, and nine more related natural sesquiterpenoid lactones by using dioxygen as the sole oxidant.


Assuntos
Oxirredutases , Sesquiterpenos , Oxidantes , Oxigênio , Lactonas/metabolismo , Sesquiterpenos/metabolismo
14.
Appl Environ Microbiol ; 90(4): e0204423, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38483171

RESUMO

The ability of some white rot basidiomycetes to remove lignin selectively from wood indicates that low molecular weight oxidants have a role in ligninolysis. These oxidants are likely free radicals generated by fungal peroxidases from compounds in the biodegrading wood. Past work supports a role for manganese peroxidases (MnPs) in the production of ligninolytic oxidants from fungal membrane lipids. However, the fatty acid alkylperoxyl radicals initially formed during this process are not reactive enough to attack the major structures in lignin. Here, we evaluate the hypothesis that the peroxidation of fatty aldehydes might provide a source of more reactive acylperoxyl radicals. We found that Gelatoporia subvermispora produced trans-2-nonenal, trans-2-octenal, and n-hexanal (a likely metabolite of trans-2,4-decadienal) during the incipient decay of aspen wood. Fungal fatty aldehydes supported the in vitro oxidation by MnPs of a nonphenolic lignin model dimer, and also of the monomeric model veratryl alcohol. Experiments with the latter compound showed that the reactions were partially inhibited by oxalate, the chelator that white rot fungi employ to detach Mn3+ from the MnP active site, but nevertheless proceeded at its physiological concentration of 1 mM. The addition of catalase was inhibitory, which suggests that the standard MnP catalytic cycle is involved in the oxidation of aldehydes. MnP oxidized trans-2-nonenal quantitatively to trans-2-nonenoic acid with the consumption of one O2 equivalent. The data suggest that when Mn3+ remains associated with MnP, it can oxidize aldehydes to their acyl radicals, and the latter subsequently add O2 to become ligninolytic acylperoxyl radicals.IMPORTANCEThe biodegradation of lignin by white rot fungi is essential for the natural recycling of plant biomass and has useful applications in lignocellulose bioprocessing. Although fungal peroxidases have a key role in ligninolysis, past work indicates that biodegradation is initiated by smaller, as yet unidentified oxidants that can infiltrate the substrate. Here, we present evidence that the peroxidase-catalyzed oxidation of naturally occurring fungal aldehydes may provide a source of ligninolytic free radical oxidants.


Assuntos
Basidiomycota , Manganês , Polyporales , Lignina/metabolismo , Proteínas Fúngicas/metabolismo , Basidiomycota/metabolismo , Aldeídos , Peroxidases/metabolismo , Ácidos Graxos , Oxidantes
15.
Chemosphere ; 354: 141587, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38494002

RESUMO

Electron transfer played key role in peroxymonosulfate (PMS) activation for heterogeneous Fenton-like catalysts (HFCs). However, the relationship between electron exchange capacity (EEC) and catalytic activity of HFCs has not been elucidated. Herein, thirteen HFCs reported in our previous studies were selected to measure their EEC via electrochemical methods and to investigate the correlation between EEC and catalytic activity for PMS. The results show that nitrogen-doped graphene oxide had much higher EEC (5.299 mM(e) g-1), followed by reduced graphene oxide (3.23 mM(e) g-1), nitrogen-doped biochar-700 (2.032 mM(e) g-1), graphene oxdie (1.789 mM(e) g-1), nitrogen-doped biochar-300 (1.15 mM(e) g-1), g-C3N4 (0.752 mM(e) g-1) and biochar (0.351 mM(e) g-1). For carbon materials, their catalytic activity was not determined by electron donor capacity (EDC), electron acceptor capacity (EAC) and EEC (EDC + EAC), but was linear correlation with |EDC-EAC| that can characterize the extent of HFCs reacting with PMS. The higher the |EDC-EAC| is, the higher the catalytic activity of HFCs is. For carbonaceous materials, their catalytic activity was not proportional to EAC, but had good linear correlation with EDC and |EDC-EAC|. The discrepancy between carbon materials and carbonaceous materials could be due to the different activation mechanisms. Further analysis found that there was no correlation between EEC and the reactive species derived from PMS, indicating that the produced reactive species was not only controlled by EEC. This study firstly elucidated the correlation between EEC and catalytic activity of HFCs, and |EDC-EAC| could be used as an index for evaluating the catalytic activity of HFCs.


Assuntos
Carvão Vegetal , Elétrons , Grafite , Peróxidos , Peróxidos/química , Carbono/química , Oxidantes , Nitrogênio/química
16.
Chemosphere ; 354: 141684, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38494005

RESUMO

The presented research concerns the use of nickel cobaltite nanoparticles (NiCo2O4 NPs) for the heterogeneous activation of peracetic acid and application of NiCo2O4-PAA system for degradation 10 organic micropollutants from the group of bisphenols. The bisphenols removal (initial concentration 1 µM) process was optimized by selecting the appropriate process conditions. The optimal amount of catalyst (115 mg/L), peracetic acid (PAA) concentration (7 mM) and pH (7) were determined using response surface analysis in the Design of Experiment. Then, NiCo2O4 NPs were used to check the possibility of reuse in subsequent oxidation cycles. The work also attempts to explain the mechanism of oxidation of the studied micropollutants. The participation of the sorption process on the catalyst was excluded and based on the experiments with radical scavengers it can be concluded that the oxidation proceeds in a radical pathway, mainly with participation of O2•- radicals. Experiments conducted in real water matrices exhibit low impact on degradation efficiency. Toxicity tests with green alga Acutodesmus obliquus and aquatic plant Lemna minor showed that post-reaction mixture influenced growth and the content of photosynthetic pigments in concentration dependent manner.


Assuntos
Araceae , Compostos Benzidrílicos , Minerais , Oxidantes , Fenóis , Poluentes Químicos da Água , Ácido Peracético , Peróxido de Hidrogênio , Níquel , Oxirredução
17.
J Hazard Mater ; 469: 134004, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38521041

RESUMO

Chronic inflammation induced in vivo by mineral fibres, such as asbestos, is sustained by the cyclic formation of cytotoxic/genotoxic oxidant species that are catalysed by iron. High catalytic activity is observed when iron atoms are isolated in the crystal lattice (nuclearity=1), whereas the catalytic activity is expected to be reduced or null when iron forms clusters of higher nuclearity. This study presents a novel approach for systematically measuring iron nuclearity across a large range of iron-containing standards and mineral fibres of social and economic importance, and for quantitatively assessing the relation between nuclearity and toxicity. The multivariate curve resolution (MCR) empirical approach and density functional theory (DFT) calculations were applied to the analysis of UV-Vis spectra to obtain information on the nature of iron and nuclearity. This approach led to the determination of the nuclearity of selected mineral fibres which was subsequently used to calculate a toxicity-related index. High nuclearity-related toxicity was estimated for chrysotile samples, fibrous glaucophane, asbestos tremolite, and fibrous wollastonite. Intermediate values of toxicity, corresponding to a mean nuclearity of 2, were assigned to actinolite asbestos, amosite, and crocidolite. Finally, a low nuclearity-related toxicity parameter, corresponding to an iron-cluster with a lower catalytic power to produce oxidants, was assigned to asbestos anthophyllite.


Assuntos
Amianto , Ferro , Fibras Minerais/toxicidade , Fibras Minerais/análise , Amianto/toxicidade , Asbestos Serpentinas , Asbesto Crocidolita , Oxidantes
18.
Toxicol Ind Health ; 40(5): 232-243, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38467557

RESUMO

Exposure of zebrafish embryos to glucose is a suitable model for the fetal hyperglycemia seen in gestational diabetes. Diethylhexyl phthalate (DEHP), which is considered an endocrine-disrupting chemical, is one of the most common phthalate derivatives used in stretching plastic and is encountered in every area where plastic is used in daily life. In the present study, the effects of DEHP on pathways related to insulin resistance and obesity were examined in zebrafish embryos exposed to glucose as a fetal hyperglycemia model. Zebrafish embryos were exposed to DEHP, glucose, and glucose + DEHP for 72 h post-fertilization (hpf), and developmental parameters and locomotor activities were monitored. At 72 hpf ins, lepa, pparγ, atf4a, and il-6 expressions were determined by RT-PCR. Glucose, lipid peroxidation (LPO), nitric oxide (NO) levels, glutathione S-transferase (GST), superoxide dismutase (SOD), and acetylcholine esterase (AChE) activities were measured spectrophotometrically. Compared with the control group, glucose, LPO, GST activity, il6, and atf4a expressions increased in all exposure groups, while body length, locomotor, and SOD activities decreased. While AChE activity decreased in the DEHP and glucose groups, it increased in the glucose + DEHP group. Although glucose exposure increased pparγ and lepa expressions, DEHP significantly decreased the expressions of pparγ and lepa both in the DEHP and glucose + DEHP groups. Our findings showed that DEHP amplified oxidant and inflammatory responses in this fetal hyperglycemia model, predisposing insulin resistance in zebrafish embryos.


Assuntos
Dietilexilftalato , Hiperglicemia , Resistência à Insulina , Animais , Dietilexilftalato/toxicidade , Peixe-Zebra/metabolismo , Oxidantes , PPAR gama , Glucose/metabolismo , Hiperglicemia/induzido quimicamente , Superóxido Dismutase
19.
Biorheology ; 59(3-4): 81-96, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38461496

RESUMO

BACKGROUND: A challenge for coaches and athletes is to find the best combination of exercises during training. Considering its favorable effects, HIIT has been very popular recently. OBJECTIVE: The goal of this study was to investigate anthropometric features, performance, erythrocyte deformability, plasma viscosity (PV) and oxidative stress in response to acute and long-term (6 weeks) HIIT in adolescent basketball players. METHODS: 22 sportsmen between the ages of 14-16 were included. Tabata protocol was applied to the HIIT group in addition to their routine training program 3 days/week, for 6 weeks. Erythrocyte deformability was determined using an ectacytometer (LORCA), PV with a rotational viscometer. Total oxidant status (TOS), total antioxidant status (TAS) were measured by kits. RESULTS: HIIT for 6 weeks induced an improvement in performance tests and waist circumference. 6 weeks of HIIT resulted in a decrement, while the last exercise session yielded an increment in RBC deformability. PV and TOS of HIIT groups were decreased on the 6th week. CONCLUSIONS: Our results demonstrate that, HIIT in addition to the routine exercise program is beneficial for improving performance and blood fluidity as well as decreasing oxidative stress in basketball players. Therefore, HIIT seems as an efficient training strategy for highly-trained individuals.


Assuntos
Basquetebol , Adolescente , Humanos , Basquetebol/fisiologia , Estresse Oxidativo , Antioxidantes/metabolismo , Exercício Físico/fisiologia , Deformação Eritrocítica/fisiologia , Oxidantes
20.
mSystems ; 9(4): e0116523, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38530056

RESUMO

To establish infections in human hosts, Pseudomonas aeruginosa must overcome innate immune-generated oxidative stress, such as the hypochlorous acid (HOCl) produced by neutrophils. We set out to find specific biomarkers of oxidative stress through the development of a protocol for the metabolic profiling of P. aeruginosa cultures grown in the presence of different oxidants using a novel ionization technique for mass spectrometry, laser desorption rapid evaporative ionization mass spectrometry (LD-REIMS). We demonstrated the ability of LD-REIMS to classify samples as untreated or treated with a specific oxidant with 100% accuracy and identified a panel of 54 metabolites with significantly altered concentrations after exposure to one or more of the oxidants. Key metabolic changes were conserved in P. aeruginosa clinical strains isolated from patients with cystic fibrosis lung infections. These data demonstrated that HOCl stress impacted the Pseudomonas quinolone signal (PQS) quorum sensing system. Ten 2-alkyl-4-quinolones (AHQs) associated with the PQS system were significantly lower in concentration in HOCl-stressed P. aeruginosa cultures, including 2-heptyl-3-hydroxy-4(1H)-quinolone (PQS), the most active signal molecule of the PQS system. The PQS system regulates the production of virulence factors, including pyocyanin and elastase, and their levels were markedly affected by HOCl stress. No pyocyanin was detectable and elastase concentrations were reduced by more than 75% in cultures grown with sub-lethal concentrations of HOCl, suggesting that this neutrophil-derived oxidant may disrupt the ability of P. aeruginosa to establish infections through interference with production of PQS-associated virulence factors. IMPORTANCE: This work demonstrates that a high-throughput ambient ionization mass spectrometry method can be used successfully to study a bacterial stress response. Its application to the opportunistic pathogen Pseudomonas aeruginosa led to the identification of specific oxidative stress biomarkers, and demonstrated that hypochlorous acid, an oxidant specifically produced by human neutrophils during infection, affects quorum sensing and reduces production of the virulence factors pyocyanin and elastase. No pyocyanin was detectable and elastase levels were reduced by more than 75% in bacteria grown in the presence of hypochlorous acid. This approach has the potential to be widely applicable to the characterization of the stress responses of bacteria.


Assuntos
Quinolonas , Percepção de Quorum , Humanos , Pseudomonas aeruginosa , Ácido Hipocloroso/metabolismo , Piocianina/metabolismo , Quinolonas/análise , Fatores de Virulência/metabolismo , Espectrometria de Massas , Oxidantes/metabolismo , Elastase Pancreática/metabolismo , Biomarcadores/metabolismo , Lasers
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...